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A simple model for the experimentally observed instability of the vortex ring to 
azimuthal bending waves of wavelength comparable with the core size is pre- 
sented. Short-wave instabilities are discussed for both the vortex ring and the 
vortex pair. Instability for both the ring and the pair is predicted to occur when- 
ever the self-induced rotation of waves on the filament passes through zero. 
Although this does not occur for the first radial bending mode of a vortex filament, 
it is shown to be possible for bending modes with a more complex radial structure 
with at  least one node at  some radius within the core. The previous work of 
Widnall & Sullivan (1973) is discussed and their experimental results are com- 
pared with the predictions of the analysis presented here. 

1. Introduction 
The stability of a vortex ring of small cross-section to bending displacements of 

the filament in waves about the azimuth was investigated theoretically by 
Widnall & Sullivan (1973, referred to below as I). They also observed experi- 
mentally that the vortex ring was unstable to bending waves. Their measure- 
ments of both the amplification rate and mode shape of the instability for a given 
vortex ring were in reasonable agreement with the theoretical predictions. 

The theoretical investigation was based on the previous work of Widnall, Bliss 
& Zalay (1971, hereafter referred to as 11) and Bliss (1970), in which a general 
asymptotic analysis was presented to predict the self-induced motion of vortex 
filaments of small cross-section. This theory requires that changes along the 
filament be negligible in comparison with changes over the cross-section of the 
vortex core. In  other words, the wavelength of perturbations along the filament 
must be large in comparison with the radius of the vortex core. 

Unfortunately, the wavelength of the instability for the vortex ring predicted 
by this theory does not fulfil this requirement. The theoretical predictions would 
have been disregarded if it had not been for the rather good agreement between 
theory and experiment on the general features of the instability, the prediction 
of the number of waves in the unstable mode for given ring properties and the 
prediction of the amplification rate. 

The purpose of this paper is to present a simple model for the vortex-ring 
instability which can explain current experimental observations and serve as a 
basis for a more detailed and considerably more complex asymptotic analysis. 
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On the basis of the arguments presented here, we have concluded that the vortex 
ring is unstable to bending displacements of the filament but that the mode across 
the vortex core is a second radial mode, that is, the displacement of the filament 
changes sign as one moves out from the centre of the core, 

2. Formulation 
We consider the stability of a slender vortex ring to bending waves around the 

azimuth under the condition that the wavelength is comparable with the core 
size. (Slender means that the ratio of the vortex-core radius to the radius of the 
ring is small; i.e. a / R  Q 1.) I n  this case, we may still construct an asymptotic 
solution in the limit a/R -+ 0, but we must allow ka to be of order one, where k is 
the wavenumber along the filament. Whereas the problem treated in I was the 
limit a/R -+ 0, La < 1, the present problem is the limit a / R  --f 0, ka = 0(1), so that 
k R  -+ co as a / R  --f 0. In  this case, many of the simplifying features of the long- 
wave analysis of vortex filaments cannot be used. For example, the cut-off 
analysis cannot be used to calculate self-induced motion nor can the vortex be 
replaced by a single line filament for the purpose of calculating the velocities 
induced a t  points along the filament by short-wave perturbations around the 
ring. Even taking advantage of asymptotic methods in the limit aIR -+ 0, the 
analysis that must be done to calculate the stability of the vortex ring under the 
condition La = O(1) is much more complex and, as we shall see, requires the 
solution of several separate problems, some of which have to be done numerically. 

In  order to  motivate this considerably more complex stability calculation, we 
here consider a simple analysis which demonstrates some essential features of the 
instability and which will also serve as a basis for understanding a more complete 
calculation. This is done by considering the vortex-ring instability along lines 
similar to those for the vortex-pair instability. This model allows us to consider 
the possibility that the behaviour of the higher radial bending modes is important 
for the stability of the vortex ring (as well as for the pair). The general features of 
the instability of both the pair and the ring are shown in figure 1. 

The instability of the vortex pair to bending-wave perturbations was first 
considered by Crow (1970). Since the flow outside the vortex filaments is potential, 
the stability calculation can be done by considering the motion of the filaments 
that results from the perturbations. The vortex filaments move with a velocity 
that is a combination of the velocity of the filament that results from its perturba- 
tion in the non-uniform steady flow field of the other filament, the velocity 
induced by the displacements of the other filament and the self-induced rotation 
IR of the sinusoidally perturbed, straight vortex. Instability of the vortex pair to 
a perturbation of wavenumber k occurs whenever the tangential component of 
the velocity induced a t  the filament both by the presence and perturbations of 
the other filament can balance the self-induced rotation IR of the filament itself. 
Under these conditions, the perturbation will increase in amplitude as the fila- 
ment diverges in the induced velocity field. Typical stability calculations for the 
vortex pair indicate two ranges of unstable waves: long waves with h/b M 8 and 
short waves with h/b < 1, where b is the separation between the vortex filaments. 
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FIGURE 1. Vortex-pair and vortex-ring instability. (a )  General features of the 
instability. (b )  View of the cross-section of the filaments. 

For the short waves, it is the presence of the neighbouring filament rather than 
the perturbations on that filament that plays the dominant role in the instability. 
The presence of the other filament produces a stagnation-point flow in the neigh- 
bourhood of the vortex, whereas the velocity induced at  the vortex owing to  
short-wave perturbations of the other filament is negligible. In  the local 
cylindrical ( r ,  0) co-ordinate system centred on the unperturbed position of the 
vortex filament as shown in figure 1, this stagnation-point flow is given by 

r 
( 1 %  b)  

r 
u, = -rsin20, u - - - -Tcos~~ ,  

2mb2 .g - 2nb2 

where u, is the radial velocity and uo is the tangential velocity. The velocity of the 
vortex cross-section that results from a displacement in the O0 direction of 
magnitude ro is the sum of the radial and tangential velocities at its position 
(r,,, 0,)) in the stagnation-point flow (l), given by 

r r 
ur0 = -r sin28,, uo0 = - r cos28,, 

2nb2 2nb2 O 
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plus the self-induced rotation L2 of a sinusoidally perturbed filament.? Whenever 
ug, is equal and opposite to ro Q, the vortex will diverge along 8 = So (as sketched in 
figure I)  with velocity ur, and the position r, of the vortex will increase exponen- 
tially in time with a non-dimensional amplification rate Z = a/( F/2nrb2) given by 

ol = sin 28,. (3) 

(The complete vortex-pair stability calculation gives E 0.8 and 8, somewhat 
greater than 45" for the most unstable long waves while for the short waves 
Or. = 1 and 8, 2 45O.) 

The calculations of the vortex-pair instability (Crow 1970; 11) make use of the 
asymptotic formula for the self-induced rotation rate for long waves on a 
straight vortex filament: - 

(4) 

where ae is the effective core size of the vortex. The analysis of I1 demon- 
strates that a vortex with a given core size and distribution of vorticity is kine- 
matically equivalent to a vortex filament of the same circulation, with constant 
vorticity and of a core size a, as regards its self-induced motion for long-wave 
disturbances. 

For vortex filaments without axial flow, the short-wave instability obtained 
in these calculations is thought to be spurious since it is predicted to occur at a 
wavenumber for which the asymptotic result (4) for self-induced motion is not 
valid because ka, = O( 1). The variation of the asymptotic result with ka, is shown 
in figure 2. This expression predicts first an increase then a decrease in Q with 
increasing ka,. At ka, = 1.44, Q is predicted to be zero. Dispersion relations for 
the first radial mode of bending waves on a vortex filament do not in reality 
behave in this way. As an example, the exact result for a vortex with con- 
stant vorticity, obtained numerically from the dispersion relation presented by 
Moore & Saffman (1972), is shown in figure 2 for comparison with the asymptotic 
result. 

If we consider the condition for instability ro SZ = u+ we can see from (2) that, 
if SZ is predicted to be zero for some ka,, the vortex will position itself a t  8, = 45" 
and diverge with a velocity uro corresponding to Z = I. This is essentially the 
short-wave mode for the vortex pair identified by Crow (1970) and others. Since 
the actual dispersion relation for bending modes of this type on vortex filaments 
(as shown in figure 2) does not take the value Q = 0 for any value of ka, this is 
apparently a spurious mode of instability which arises because the asymptotic 
formula for Q used in the calculation predicts Q = 0 for ka, = O(l) ,  outside its 
range of validity. We shall show that the mode of instability for the vortex ring 
identified in I is analogous to this mode and, therefore, is also spurious. 

t We note that for short waves it is not obvious that the resulting motion of the vortex 
core is just the sum of the induced velocity due to its position in a non-uniform flow plus self- 
induced rotation in a still fluid. An analysis of this problem for a flow with constant vorticity 
indicates that the effect of the non-uniform flow enters the boundary conditions a t  the edge 
of the core. Thus, the dispersion relation (see, for example, Moore & Saffman 1972) contains 
an additional term. This appears to have a small effect but should be included in a complete 
stability calculation for short waves. 
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FIGURE 2. Comparison of the exact and asymptotic dispersion relations for waves on a 
vortex filament with constant vorticity. - , exact result; - - -, asymptotic (ka 6 1) 
result. 

However, for a straight vortex filament of finite core size, there are other 
bending modes for which f2 actually does equal zero. These modes have a more 
complex radial structure with at  least one node a t  some radius within the core. 
These modes cannot be predicted by the asymptotic long-wave analysis and must 
be obtained numerically, or in special cases analytically, for each distribution of 
vorticity within the core from a full solution of the perturbed vorticity equations. 
We postulate that it is these modes which, having Q close to zero, will diverge in 
the stagnation-point flow field. 

As an example, we have obtained f2 = Q(ka) for bending waves on a straight 
filament with constant vorticity by solving numerically for the roots of the 
dispersion relation given by Moore & Saffman (1972). Figure 3(a)  shows the 
result of these calculations. We are interested only in modes for which SZ = 0 for 
some finite ka. The first radial mode does not have this property (although its 
asymptotic expression does, as previously discussed). It can be seen in figure 3 (a)  
that there are higher radial modes for which f2 passes through zero. The first mode 
with this property is the second radial mode, for which i2 = 0 at ka, = 2.5 (a, = a 
for a vortex with constant vorticity). 

We have also used an existing computer program (Plobeck 1974) to investigate 
the dispersion relation for waves on a straight vortex filament with a continuous 
distribution of vorticity in the core. The distribution chosen was 

[ ( r )  = (r2-a2)2 (5) 

so that LJr) would be continuous at r = a. The roots of the dispersion relation 
obtained from this numerical investigation are shown in figure 3 (b) .  The agree- 
ment between the asymptotic result and the numerical results was very good for 
small ka,. (a, = 0 . 7 ~  for this particular vorticity distribution.) The numerical 
results for the second mode predicted i2 = 0 a t  ka = 3.9 or at ka, = 2.7. 

We now wish to re-examine the stability of the vortex ring considering the 
consequences of including the higher radial bending modes for which SZ can be 



40 X. E. Widnall, D. B. Bliss and C.- Y .  Tsai 

- R  

- 62 

- 1-0 ' 1 

FIGURE 3. Dispersion relations for bending modes on a straight filament. (a )  With constant 
vorticity including the higher radial bending modes (second, third, fourth). -, exact 
results; - - -, asymptotic (ka 1) result for the first mode. ( b )  With distributed vorticity 
[ (r)  including the higher radial bending modes. Results obtained by numerical calculation. 
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zero. We shall also verify that the previous analysis of I is equivalent to using 
the asymptotic formula for Q for a value of ka, = 1-44, where it spuriously 
predicts Q = 0. If we argue that short waves on a slender bent filament will, to 
lowest order in the limit a/R + 0,  ER --f co, rotate at the same rate as if the 
filament were straight, we can analyse the vortex-ring instability along the lines 
for the vortex-pair instability: as a balance between the self-induced rotation due 
to bending and the flow at the vortex due to the presence of and perturbations on 
the remainder of the ring. We expect that for short waves, such as are observed 
on vortex rings, the velocities induced at  the core boundary owing to distant 
perturbations on the ring are negligible; preliminary calculations of the outer 
potential flow using toroidal co-ordinates indicate that these are of order 1/(kR)2 
as ER + co. (ER can, of course, take only integer values for a ring.) 

In  a recent study, Bliss (1973)  expanded the velocity field near a vortex- 
filament ring to higher order than was done in 11. As in the vortex-pair instability 
previously discussed, the ternis that are of interest for the ring instability are due 
to the ‘stagnation-point ’ flow induced in the neighbourhood of the vortex core 
by the presence of the ring. (We again refer to figure 1. )  From this analysis, the 
radial and tangential velocity components of this flow are given by 

[ ”,” 1 r 

r 

u, = --,@sin20 ln---+ , 
47i-R 

4nR 
uo = -2Qrcos2e 

We consider that the velocity field (6) for the vortex ring is analogous to the 
field ( 1 )  for the pair. The velocity field (6) is not exactly a stagnation-point flow 
owing to the presence of the term Inr and to the different constants in the 
expressions for u, and uo. 

To calculate the actual motion of a curved vortex filament of finite cross-section 
perturbed with a short-wave disturbance in this non-uniform field requires a 
detailed asymptotic solution. However, to illustrate what we believe to be the 
essential mechanism in the vortex-ring instability, we calculate the net trans- 
lational motion of a cylinder of radius a, representing the vortex core boundary, 
displaced in this field. To this, we shall add the self-induced rotation due to 
perturbations on the filament. Because of the presence of the logarithm in the 
velocity field, to evaluate the net translational velocity we require that the 
displacement of the vortex core boundary be small in comparison with the core 
radius. 

In  the appendix, we show that the net translation of the cylinder of radius 
a perturbed in the ‘stagnation-point ’ flow (6) is given by [equations (A5)] 

Upo = -- 47i-RZ4 r 3r sin2eo(In:-%), 

These expressions are analogous to the expression in (2) used in the discussion of 
the vortex-pair instability. 
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We do not expect that the expressions (7) actually predict the net translational 
velocity of the core boundary to 0(1) since we already know that the same 
arguments applied to the calculation of the speed of a vortex ring would predict 

8R V - -  ln-- 
'-477R[ a '1 

rather than the correct expression 

The expression (8) was originally derived by Thompson (1883, p. 33) from 
reasoning very similar to that presented here while the more complete analysis 
presented in I1 or in Saffman (1 971 ) that includes the effects of changes in internal 
structure of the vortex core gives the expression in (9). However, we are here 
concerned with the most elementary model of vortex-ring instability which will 
at least indicate those problems that need to be treated in more detail. 

We now suppose that instability of the vortex ring to short-wave perturbations 
around the azimuth occurs whenever there is a balance between the self-induced 
rotation S2 of the waves and the net translational velocity (7) induced owing to 
the ring field. Since the mode of instability considered here has k R  --f 00 as a / R  --f 0, 
the lowest-order solution gives a value for f2 equal to that for the waves on a 
straight filament. As in the case of the short-wave instability of the vortex pair, 
if we compare the asymptotic expression (4 )  for f2 with the tangential velocity 
us, given by (7  b) ,  we see that it is not possible for uoo to balance ro f2 as k -+ co 
unless the bracket in (4) is close to zero. This occurs only when the asymptotic 
expression spuriously predicts zero. If Q could actually equal zero, the rotation 
would stop at 0, = 45", where u8, = 0, and the vortex would diverge at a velocity 
u,, given by (7 a) .  

We take as our condition for instability that fi = 0 for some kae and introduce 
the symbol K for the value of ka, at which this occurs. The instability condition 
$2 = 0 can then be written as 

k = K/a,. (10) 

This can be interpreted as follows: a vortex filament characterized by a value of K 

and a, would be unstable to waves ofwavenumber k in the presence of a stagnation- 
point flow. At this wavenumber, i2 would equal zeroand the vortex would 
diverge. The short-wave instability of both the ring and the pair occur under the 
conditions given in (10). For a vortex ring, an additional condition must be 
satisfied: instability can occur only if we can fit an integer number of these waves 
around the ring, so that 

k = n/R. (11) 

We now consider what vortex rings can accommodate integer numbers of these 
unstable waves. 

A slender vortex ring moves with a non-dimensional translation velocity 
= x / ( r / 4 ~ B )  given by 

(12) = In (8R/a,) - 4. 
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The effects of both the core size and vorticity distribution appear in the effective 
core size a,. From a combination of (10) and ( l l ) ,  we can see that a ring with a 
particular value of Ria, will be unstable to a mode n whenever R/a, = n / K .  From 
(12), this occurs whenever - 

V = In ( 8 n / K )  - $. (13) 

This is the condition that n waves for which L2 = 0 will fit on a particular ring. 
Because we consider Q = 0 as the condition for instability rather than balancing 
the low rotation rates on either side of L2 = 0 with the induced velocity ue,, we 
obtain a discrete set of P's and n's. I n  reality, a mode n would be unstable for 
values of P in a band about this value of P. The results of I for the value of P for 
which a given mode n is unstable agree with the predictions of (13) for the value 
K = 1.44, the value for the vortex described by the asymptotic formula (4). 

As in the vortex-pair instability, if !2 = 0, the vortex will diverge at  0, = 45" 
with velocity ur0, given by (7a) ,  corresponding to a non-dimensional amplifica- 
tion rate E = a/(r/4nR) given by 

(14) a = $[ln (8R/a) - 31 = $( V - I;-). 

Without a full asymptotic analysis, it is not clear how the core size a in the 
expression (7a )  for u,., should be chosen. We shall take it to be a, but recognize 
that, without fwther investigation, this is correct only to order In ae/R. 

For large n, it can be shown that the analysis in I predicts an amplification rate 

- - 

(15) 
- a = $ ( P - r  

4)- 

We can see that, as expected, the two approaches differ to O( 1). Since (15) is based 
on a long-wave analysis and the reasoning leading to (14) is known not to be valid 
to O( 1), there is no reason a t  this stage to attempt to reconcile the two results. The 
fact that both approaches predict E - $ P is probably of more significance. 

At this point, we have reached the following conclusions. 
(i) The essential features of the vortex-ring instability can be understood by 

considering the balance between the induced velocities due to perturbation in the 
mean ring field and the self-induced rotation of waves on a straight filament. 

(ii) Both the analysis of I and the present analysis predict instability whenever 
the self-induced rotation is zero and the filament then diverges in the stagnation- 
point flow due to the ring field. 

(iii) The results presented in I are not valid because the asymptotic formula (4) 
for Q is not valid a t  ka, = 1.44, at which it predicts zero rotation rate. 

But now we consider the other bending waves on the filament which do permit 
a displacement of the core boundary and yet produce a self-induced rotation that 
passes through zero (figure 3). These modes have been identified by an analysis 
that is valid for short waves. They have a t  least one node in the radial direction. 
For a particular vortex ring, characterized by P, the conditions for vortex-ring 
instability are again given by (13) with K now chosen as the value of ka, for which 
waves on a straight filament with that particular vorticity distribution would 
produce no self-induced rotation. 

Although in principle one can identify an effective core size for any vortex 
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FIGURE 4. Theoretical and experimental results for the value of V for which a given mode n. is 
unstable. 0, asymptotic result, K = 1.44; E, constant vorticity, K = 2.5; + , distributed 
vorticity, K = 2.7; - x -, experiment, frGm I. 

filament, the concept of kinematic similarity of filaments with equal effective 
core size does not hold for short waves. Consequently, the value of K (ka, for which 
C2 = 0 )  would depend upon the details of the vorticity distribution; we obtained 
K = 2.5 for a vortex with constant vorticity and K = 2.7 for the smooth vorticity 
distribution (5). Since for short waves the dispersion relation and the value of K 

depend upon the details of the vorticity distribution, the mode n which is unstable 
for a given ring ( v )  also depends upon the details of the vorticity distribution. 
This dependence is rather weak, i.e. as In K .  The value of v for which a given mode 
n is unstable is shown in figure 4 for vortices with both constant ( K  = 2.5) and 
distributedvorticity ( K  = 2-7). Also shown are the results obtained in I ,  equivalent 
to using K = 1.44 from the asymptotic formula (4). The experimental results 
presented in I are also shown. The agreement between theory and experiment is 
considerably improved. Instability in the second radial mode for the continuous 
distribution of vorticity ( K  = 2.7) gives particularly close agreement. (The 
vorticity distribution of one of these rings was measured using LDV techniques 
by Sullivan, Widnall & Ezekiel (1973); the distribution of vorticity was quite 
smooth. However, for the simple model presented in this paper, we have not 
attempted to fit 'chis vorticity exactly to  find a more precise value of K . )  

If with the benefit of our new insight (or hindsight) we re-examine the photo- 
graph of the instability shown in figure 5 (plate 11, taken from I ,  we see that the 
displacement of the centre of the core is, in fact, in the direction opposite to that 
of displacements of the outer portions of the flow, indicating a second radial mode. 

Since C2 = 0, the vortex core diverges along 0, = 45" with the velocity u,.~ given 
by (7 a) and the amplification rate E is again given by (14) ; E is independent of K 

and depends only upon 8. Since we know that changes in the internal structure 
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of the core due to  the perturbation must be included to  predict the velocity of 
translation uro to O( l), we do not expect good agreement with the amplification 
rate obtained in the experiments of I .  These particular data were obtained for a 
rather fat ring (a /B  = 0.3) with a low value of 7 ( 7 = 2-5) and a moderate number 
of waves (n = 7) in the unstable mode. 

Although we feel that the simple model presented here describes the essential 
features of the vortex-ring instability and that the occurrence of instabilities of 
higher radial mode on vortex filaments has been demonstrated, there are many 
questions raised by this analysis that require a more detailed mathematical 
treatment. One question concerns the dispersion relation for waves on a curved 
filament. It is clear that  for alR + 0 with ka N O( 1), so that  ICR -+ CO, the lowest- 
order solution for the vortex behaviour will correspond to waves on a straight 
filament, for which we have here presented some results. The effects of curvature 
enter through the next term in an expansion in alR. From this, one would con- 
clude that the dispersion relation C2 = Q(ka,) must pass through !J = 0 for ICa, 
somewhere near the value K for the straight filament. The additional velocities 
induced by the nearby waves on the curved filament also enter into the analysis 
a t  this point. 

To calculate the motion of the vortex filament in the non-uniform flow field of 
the ring, it is necessary to obtain a more complete inner solution for the vortex 
core. This should include not only the effects of short waves and curvature but 
also the effects of the displacement of the core in the radial direction, which will 
change the local curvature and stretch the vortex elements in the core. The inner 
solution obtained in I1 cannot be used for short waves. 

This work was supported by the Air Force Office of Scientific Research (OSR) 
under Contract F44620-69-C-0090. 

Appendix 

the non-uniform ‘stagnation-point ’ flow of the ring field (6), 
To calculate the net translational motion of a circular cylinder perturbed in 

we refer to the geometry sketched in figure 6. The perturbation is taken to be a 
displacement r, in the direction 8 = 8, where ro a. We calculate the velocity 
normal Gr to the core boundary in a new cylindrical co-ordinate system (r,, 8,) 
centred at (rat 0,). The ‘ free-stream ’ terms which will cause a net translation in 
the 8, direction will be of the form 4, N cos (8, - 8,); terms of the form 

4,. N sin (8, - 8,) 

represent translations induced normal to 8 = 8,. Induced velocities with 
dependences such as sin 28, represent the attempts of the non-uniform flow to 
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FIGURE 6. Perturbation of the vortex core boundary in the steady 
non-uniform velocity field of the vortex ring. 

change the shape of the vortex core boundary; these terms do not result in any 
net translation. 

From the geometry of figure 6, we can see that the radial velocity Gr is related 
to the velocities u, and uB through 

fir E ur + u B A ~ ,  (A 1 )  

where A8 = 8,-8: the small change in the direction of the normal due to the 
displacement of the cross-section. For a small displacement r,, this is given by 

A8 N (r,/a) sin (8 - 8,). (A 2) 

r 2 a+r0c0s(~-8,) .  (A 3) 

The radius to a point on the core boundary is given by 

Combining (6), (A l), (A 2) and (A 3) gives the following expression for the radial 
velocity at  the perturbed position of the boundary that would result in a net 
translation of this boundary (i.e., only the sin (8, - 8,) and cos (8, - 8,) terms): 

u, = - $r,[cos 28, sin (8, - 0,) + sin 28, cos (8, - 8,)] In- - 3 . (A 4) 

This velocity normal to the core boundary is equivalent to that due to a free 
stream in the 8 = 8, direction of magnitude 

(: 1 - r  
4nR2 
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plus a free stream in the direction normal to 8 = O0 of magnitude 

8R 
3r0 cos 28, (In - 3) . r 

U(j, = - 4nR2 

The velocities uro and uoo in (A 5) are taken to be the net translational velocities 
in the radial and tangential directions that the core boundary will experience as 
a result of being displaced in the ring field. 
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FIGURE 5 .  Flow visualization of the vortex-ring instability; n = 7 .  Taken froin I. 

WIDNALL, BLISS AND TSAI (Facing p .  48) 


